Вспышка исцеления
В ОИЯИ разработан новый протонный циклотрон для лучевой терапии
К 2030 году в Объединенном институте ядерных исследований (ОИЯИ) в Дубне появится центр для проведения экспериментальных и клинических исследований в области ядерной медицины. Пилотной установкой и основой центра станет протонный медицинский ускоритель MSC-230, который построят уже в 2024 году. Одна из перспективных областей его применения — протонная флэш-терапия, позволяющая излечивать тяжелые онкологические заболевания за доли секунды.
Быстрее, мощнее, безопаснее
Ионизирующее излучение применяют для лечения опухолей уже более 100 лет. Первый сеанс был проведен в 1896 году, тогда облучению подверглась пациентка с неоперабельным раком молочной железы. С развитием технологий лучевая терапия стала одним из самых распространенных и эффективных методов лечения рака. Ионизирующее излучение уничтожает клетки опухоли, разрушая клеточную мембрану и вызывая некроз, а также нарушает их деление из-за повреждений в ДНК. Клетки опухоли делятся быстрее, чем окружающие их здоровые клетки, поэтому облучение действует на них более губительно. Благодаря этому лучевая терапия столь эффективна.
Первые эксперименты с протонной лучевой терапией стартовали в Университете Беркли в США в 1954 году.
В СССР протонной лучевой терапией первыми начали заниматься три физических центра: ОИЯИ в Дубне в 1967 году, Институт теоретической и экспериментальной физики им. А. И. Алиханова (ИТЭФ) в Москве в 1969 году и Ленинградский институт ядерной физики (сейчас – ПИЯФ) в Гатчине в 1975 году.
Особенно быстро развивался Центр протонной лучевой терапии в ИТЭФ, уже в 1970-е годы там вели облучение шесть крупнейших клиник Москвы. К 1990 году в России с помощью протонной терапии было пролечено 4320 больных.
На пучке фазотрона в ОИЯИ впервые в России была реализована методика трехмерной конформной протонной лучевой терапии.
В 1990-е годы центр в Гатчине был закрыт, центр в ИТЭФ работал до 2012 года, а центр в ОИЯИ принимал пациентов до июня 2019 года.
В 2017 году лечебно-диагностический центр МИБС в Санкт-Петербурге открыл первый в России коммерческий клинический центр протонной лучевой терапии. Там проходят лечение 800 человек в год. А двумя годами позже открылась первая государственная клиника Федерального медико-биологического агентства с протонной терапией в Димитровграде.
Центр в ОИЯИ станет третьим центром протонной терапии в стране, а MSC-230 — первым протонным циклотроном, способным обеспечить флэш-режим в широком диапазоне энергий, длительности вспышки и мощности поставляемой дозы.
Подробности
Действие ионизирующего излучения зависит в том числе от величины поглощенной дозы, ее мощности, а также распределения во времени. Существует несколько методик лучевой терапии. При однократном облучении всю дозу сразу же подводят к опухоли, при фракционном — дозу делят на отдельные части. Фракционно-протяженный метод подразумевает разделение дозы на части и удлинение времени каждой фракции облучения за счет снижения мощности. Также существует метод непрерывного облучения: в этом случае лечение длится несколько часов или даже дней, этот метод используется при проведении внутритканевой и внутриполостной лучевой терапии.
Несмотря на доказанную эффективность, протяженное во времени облучение часто сильно затрагивает здоровые ткани, окружающие опухоль. Поэтому ученые совершенствуют методы лучевой терапии, стараясь максимально исключить нормальные ткани из области воздействия радиации, уменьшить объемы облучения, подводя при этом существенно более высокую дозу к опухоли. Для сокращения общей продолжительности лучевой нагрузки может применяться импульсная лучевая радиотерапия — флэш-терапия.
Протонная терапия
Методика флэш-терапии заключается в быстрой и точной доставке сверхвысокой дозы излучения к опухоли. Если обычная лучевая терапия использует мощность дозы от 1 до 7 Гр/с, то флэш-облучение проводится при мощности свыше 40 Гр/с. По мнению исследователей, короткий промежуток времени воздействия при флэш-терапии способен вызвать в тканях быстрое потребление кислорода и временную гипоксию (недостаток кислорода). Снижение содержания кислорода в клетках за счет использования флэш-режима повышает результативность терапии.
Наиболее эффективная разновидность флэш-терапии — протонная флэш-терапия. Из-за большой массы протоны обладают небольшим поперечным рассеянием в ткани и зависящей от энергии длиной пробега, поэтому пучок можно очень точно сфокусировать на опухоль, не задевая окружающие ткани. Кроме того, практически вся доза протонов выделяется в конце пробега пучка в пике Брэгга. Так наибольшую дозу облучения получают не поверхностные ткани, а глубоко залегающая опухоль.
«Здоровая ткань лучше противостоит флэш-облучению, в то время как опухоль обладает таким же уровнем чувствительности, что и к обычному лечению. Метод вызывает огромный интерес у специалистов, так как не только уменьшает воздействие на здоровые ткани, но и сокращает количество процедур лечения с 10–30 при обычном лечении до 1–3. Более того, флэш-эффект работает даже в случае радиорезистентных опухолевых клеток, которые мало подвержены лучевой терапии», — рассказывает Галина Карамышева, начальник Научно-экспериментального отдела новых ускорителей Лаборатории ядерных проблем ОИЯИ.
Как правило, протоны применяются для лечения только опухолей первой и второй стадии, но не используются для борьбы с множественными метастазами. Однако флэш-терапия дает возможности в том числе для лечения на более тяжелых стадиях с метастазирующими опухолями.
В процессе лечения методом флэш-терапии за один импульс длительностью в сотни микросекунд к новообразованию подводится порядка 1013 протонов. Этого достаточно, чтобы всего одним импульсом вызвать гибель опухоли. «Поскольку при флэш-методике требуется облучение ударной дозой заряженных частиц за очень короткий промежуток времени, необходимо обеспечить высокую интенсивность ускоренного пучка. Перспективы флэш-терапии определили актуальность изохронного циклотрона как ускорителя с непрерывным, а следовательно, интенсивным пучком. Наш циклотрон позволит реализовать те режимы, которые недоступны на других ускорителях протонов. Это значит, что на нашем ускорителе можно будет отрабатывать не только методики лечения пациентов наиболее современными методами, но и технологии создания новых специализированных медицинских ускорителей», — отмечает Галина Карамышева.
Из НИИЭФА в Дубну
Создаваемый в ОИЯИ ускоритель MSC-230 представляет собой сверхпроводящий изохронный протонный циклотрон для лучевой терапии и проведения медико-биологических исследований. Установка способна генерировать непрерывный пучок протонов, поэтому ее считают наиболее перспективной именно для флэш-терапии. Название MSC-230 проект получил, так как будет иметь максимальную энергию протонного пучка в 230 МэВ. Масса установки около 100 тонн, диаметр — 3,9 м, а высота — 1,7 м.
Циклотрон будет включать в себя магнитную систему из расположенных симметрично четырех пар секторов и ярма магнита со сверхпроводящими обмотками основных катушек. В зоне вывода форма секторов магнита не круглая, а повторяет орбиту ускоряемых частиц.
Пик Брэгга — точка в конце пробега протонов, где ионизирующие частицы передают ткани большую часть своей энергии. Таким образом доза облучения в глубине в несколько раз выше дозы на входе.
Изохронный циклотрон — циклотрон, в котором частота обращения частицы не изменяется с ростом ее энергии. Применяется для ускорения тяжелых частиц — протонов, ионов.
Мощность дозы — доза, полученная в единицу времени. Чем больше мощность дозы, тем быстрее растет доза излучения.
Поглощенная доза — величина энергии ионизирующего излучения, переданная веществу (отношение энергии излучения, поглощенной в данном объеме, к массе вещества в этом объеме).
Словарь
У MSC-230 перед другими медицинскими циклотронами будет несколько технических преимуществ. Во-первых, высокий темп ускорения за счет четырех резонаторов, позволяющих избежать потерь в процессе ускорения. Во-вторых, внутренний источник протонов, обеспечивающий высокий коэффициент захвата в режиме ускорения. В-третьих, низкий уровень магнитного поля для обеспечения высокой интенсивности пучка и эффективного вывода пучка из ускорителя.
Все основные технические решения разрабатывали с использованием компьютерного моделирования систем циклотрона и детального расчета динамики пучка в циклотроне. Динамика пучка характеризует его поведение и устойчивость в ускорителе под действием внешних и собственных электромагнитных полей. В конструкцию ускорителя также заложены сверхпроводящие технологии, разработанные для мегасайенс-проекта NICA в Лаборатории физики высоких энергий ОИЯИ.
Проект опирается на опыт сотрудничества ОИЯИ с Институтом физики плазмы в г. Хэфэй в Китае, итогом которого стал запуск первого сверхпроводящего циклотрона в Институте физики плазмы. Также ОИЯИ совместно с бельгийской компанией IBA работал над циклотронами для адронной терапии — один из них действует сейчас в Димитровграде.
Росатом тоже участвует в проекте — в апреле 2022 года ОИЯИ и НИИЭФА заключили договор на разработку и изготовление ускорительного комплекса на базе MSC-230. Договором предусмотрены разработка технической документации, изготовление узлов и систем ускорителя в НИИЭФА. Сборка, наладка и последующий пуск циклотрона будет осуществляться в Дубне. «В текущем году в Институте электрофизической аппаратуры им. Д. В. Ефремова в Санкт-Петербурге началось техническое проектирование и производство основных систем циклотрона. НИИЭФА имеет необходимые производственные мощности и бесценный опыт создания компактных циклотронов на энергию до 30 МэВ для наработки изотопов. Создание компактного циклотрона для протонной терапии на энергию 230 МэВ — это качественный скачок в развитии технологий и методологий, совершить который НИИЭФА поможет богатый опыт работы ОИЯИ над ускорителями для адронной терапии», — считает Галина Карамышева.